On the Isomorphism Problem for Helly Circular-Arc Graphs
نویسندگان
چکیده
The isomorphism problem is known to be efficiently solvable for interval graphs, while for the larger class of circular-arc graphs its complexity status stays open. We consider the intermediate class of intersection graphs for families of circular arcs that satisfy the Helly property. We solve the isomorphism problem for this class in logarithmic space. If an input graph has a Helly circular-arc model, our algorithm constructs it canonically, which means that the models constructed for isomorphic graphs are equal.
منابع مشابه
Deciding Circular-Arc Graph Isomorphism in Parameterized Logspace
We compute a canonical circular-arc representation for a given circular-arc (CA) graph which implies solving the isomorphism and recognition problem for this class. To accomplish this we split the class of CA graphs into uniform and non-uniform ones and employ a generalized version of the argument given by Köbler et al. (2013) that has been used to show that the subclass of Helly CA graphs can ...
متن کاملHelly Circular-Arc Graph Isomorphism Is in Logspace
We present logspace algorithms for the canonical labeling problem and the representation problem of Helly circular-arc (HCA) graphs. The first step is a reduction to canonical labeling and representation of interval intersection matrices. In a second step, the Δ trees employed in McConnell’s linear time representation algorithm for interval matrices are adapted to the logspace setting and endow...
متن کاملEssential obstacles to Helly circular-arc graphs
A Helly circular-arc graph is the intersection graph of a set of arcs on a circle having the Helly property. We introduce essential obstacles, which are a refinement of the notion of obstacles, and prove that essential obstacles are precisely the minimal forbidden induced circular-arc subgraphs for the class of Helly circular-arc graphs. We show that it is possible to find in linear time, in an...
متن کاملNormal Helly circular-arc graphs and its subclasses
A Helly circular-arc modelM = (C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, thenM is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, thenM is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal He...
متن کاملOn circular-arc graphs having a model with no three arcs covering the circle
An interval graph is the intersection graph of a finite set of intervals on a line and a circular-arc graph is the intersection graph of a finite set of arcs on a circle. While a forbidden induced subgraph characterization of interval graphs was found fifty years ago, finding an analogous characterization for circular-arc graphs is a long-standing open problem. In this work, we study the inters...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Comput.
دوره 247 شماره
صفحات -
تاریخ انتشار 2016